
Finite element analysis of the viscous 
f low in a vaned radial diffuser 
Rita J. Schnipke, James G. Rice, and Ronald D. Flack* 
A new finite element method was used to analyze an experimental model of a radial vaned 
diffuser. The new method includes a streamline upwind formulation for the advection terms 
in the governing equations. The streamline upwind significantly reduces numerical 
diffusion while maintaining the stability of the conventional upwind formulation. The new 
finite element method also incorporates an iterative equal-order, velocity-pressure solution 
method based on the well-known SIMPLER algorithm. The results of the analysis are 
compared to f low visualization studies of the experimental model. The flow separation point 
for the four blade diffuser was predicted to occur at 19, 6% of the blade length from the 
leading edge. The experimentally determined value was 23% of the blade length. For the eight 
blade diffuser model, separation was predicted to occur at 43% of the blade length from the 
leading edge, as compared to the experimentally observed value of 50% of the blade length. 
With this performance comparison, the proposed finite element method has been 
demonstrated to be reliable for predicting complex fluid flows. 
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Introduction 

The diffuser in a turbomachine converts a portion of the fluid's 
kinetic energy into static pressure. A vaned diffuser uses blades 
to better guide the flow to obtain a higher rate of diffusion than 
is possible with a vaneless diffuser. 

An ideal diffuser design will provide efficient pressure 
recovery over a wide range of flow conditions; however, this is 
rarely achieved in practice. Most turbomachine designs are 
based on limited empirical data. Numerical methods offer the 
potential to provide parametric studies for the designer to 
maximize the performance of the turbomachine. Before the 
numerical methods can be used with confidence, they must be 
verified by comparing numerical predictions to measured data. 

To this end, a clear plastic model of a radial vaned diffuser 
was designed and built at the University of Virginia I (see Figure 
1). The purpose of the model was to study the flow patterns for 
various blade designs in the diffuser. The design also allows for 
detailed measurements of velocities in the diffuser, thus 
providing experimental data for verification of computational 
fluid dynamics models. For a more detailed description of the 
experimental diffuser model, see Reference 1. 

This experimental diffuser model was chosen as an 
application for the new computational method presented here 
for several reasons. First, the diffuser model was designed for 
two-dimensional flow. Since the method used here departs 
significantly from many of the current finite element flow 
models, a two-dimensional version was developed to reduce 
debugging efforts and demonstrate the method's reliability. 

Another reason this diffuser rig was chosen was that the fluid 
flow in the rig involves several complex features. The flow 
contains large separation regions, areas of steep velocity, and 
pressure gradients and represents a high Reynolds number. All 
these features provide difficulties for any computational 
method. Hence, successfully modeling these features would 
demonstrate the robustness of the presented finite element 
method. 

Finally, the diffuser model was designed so that laser 
velocimetry measurements could be taken. These data would 
provide a means of verifying the accuracy of the finite element 
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method proposed here. As a preliminary step to this exacting 
verification process, the new finite element method's predicted 
results will be compared to the flow visualization results of the 
experimental diffuser model reported in Brownell et al. 1 The 
comparison to the laser velocimetry data will be published 
subsequently. 

This new finite element method was designed to incorporate 
the best features of both f'mite difference and finite element 
methods. To date, most  finite element methods for fluid flow 
have required far more computer storage than finite difference 
methods and were limited in the types of problems that they 
could readily solve. From the onset, the current method was 
developed to be competitive in applications, computer storage, 
and execution times with the more popular finite difference 
methods. However, the new method is a finite element 
formulation, thus taking advantage of the inherent geometric 
flexibility of finite elements. 

In the following sections, we outline the proposed finite 
element method. Following that description, we present the 
diffuser geometry. Next, we discuss the predicted results along 
with the comparison to the flow visualization studies of the 
experimental model. Finally, we list the conclusions from this 
comparison. 

Finite element method 

Governing equations 

The flow in the diffuser is treated as two-dimensional, 
incompressible, and steady. The governing equations are then 
the reduced Navier-Stokes equations and the continuity 
equation. The governing equations expressed in cylindrical 
coordinates are: 

l ~r (rpu)+!~(pv)=O (1) 

Ou 10u v 2 Op 
P"~+PV~-P7= or 

[-1 0 [ 0u'~ 1 02u u 2 0,-] 
+/ZLr~r~r-~r)÷r2 002 r2 r2 ~-~J (2) 
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The viscosity that appears in Equations 2 and 3 is the effective 
viscosity. A simple eddy viscosity turbulence model was used for 
this analysis. Since the primary interest in this analysis is flow 
visualization, a constant eddy viscosity was assumed, which 
turns out to be a reasonable first approximation for the type of 
flow considered. 2 

Finite element mesh 

The solution domain is discretized using four node quadrilateral 
elements, as illustrated in Figure 2. Over each element, the 
dependent variables are approximated using bilinear shape 
functions of the form 

4, = ar + bO + crO + d (4) 

Both velocity components and pressure are defined at the four 
indicated nodal locations on each element. No mixed-order 
approximation 3-5 (comparable to the staggered grid of finite 
differences 6) is used. 

Discretization 

The two momentum equations are discretized using Galerkin's 
method following conventional finite element practice 7 for all 

experimental diffuser model 

Xi 'Yi 

Figure 2 
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xj j 

Four node quadrilateral element 

terms except the advection terms, which are treated using the 
monotone streamline upwind approach described in Rice and 
Schnipke. s 

In this approach, the advection terms for the transported 
variable, 4,, 

04, 1 o4, 
PU~r +PV r O0 (5) 

are written in streamline coordinate as 

04, 
pu, d-s (6) 

where u, is the streamwise velocity, and O4,/Os is the streamwise 
gradient of 4,. Noting that for pure advection, 4, is constant 

N o t a t i o n  
A 
a, b, c, d 

a~ 

f~' 
f~ 

Element area 
Coefficients for polynomial shape function 
Coefficient matrix for u-momentum equation 
(Eq. 2) 
Coefficient matrix for v-momentum equation 
(Eq. 3) 
Source term vector for u-momentum equation 
Source term vector for v-momentum equation 

P 
P 

U 

V 

W 
0 
// 
P 

Pressure, N/m 2 
Radial distance, m 
Radial velocity component, m/s 
Circumferential velocity component, m/s 
Weighting function 
Circumferential distance, radians 
Effective viscosity, kg/s. m 
Mass density, kg/m 3 
General dependent variable 
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Finite element analysis 

along a streamline, the terms like Equation 6 are treated as 
constants in the finite element residual equations for the 
transported variable $. The values for Equation 6 are 
determined by a straightforward and inexpensive streamline 
tracing method. 

The monotone streamline upwind approximation used here 
has been tested extensively on several standard or benchmark 
problems both in Cartesian s'9 and cylindrical coordinates. 9 

The results from these problems demonstrate that the 
streamline upwind significantly reduces numerical diffusion but 
does not suffer from the overshoot-undershoot problem 
predominant in many of the discretization schemes designed to 
reduce numerical errors, t°-tz 

The element residual equations are formed 
momentum equations as 

f {  c 3 u l c 3 u v 2  
PU-~r+ PVr ~--P r 

E1 C~ (rC~U'~ 1 02u u 2 2-~] } WdA 
- u -; ~ \ ~!-~ ,.~ ~o" r ~ ,'" 

pu y~ + p"-; ~ +  p r 

-~' 7~  T r ) + ; ~  --~r '~o 

1 0p . 'A 

from the 

(7) 

(8) 

Using Galerkin's method and the streamline upwind for the 
advection terms, these equations are evaluated over each 
element using a 2 x 2 Gauss quadrature. The element equations 
are then assembled to form the global node equations: 

a'/iu,= ~ a~uf+ f ' / -  ~-~2 WdA (9) 
j , j # !  j~,  

~ ~1 ~p 
ai'ivi = E aOvi + J, - J r ~-O WdA (10) 

j,jq:~, 

The coefficient matrices a~ and a~ are identical, with the possible 
exception of different boundary conditions. Substituting the 
bilinear interpolation for pressure into Equations 9 and 10 
results in the following global node equations: 

a~u,= ~ aSuj+fr +Ebrip I (11) 
j , j # i  J 

a~vi= ~ ayyj+ f~ + ~ b~jpj (12) 
J,J~[ 1 

Equations l l  and 12 are the discretized momentum equations 
that will be solved to determine u and v. 

The pressure equation is derived element by element from the 
continuity equation. Since an equal-order bilinear 
approximation is used for the pressure, the continuity residual is 
formed by the product of the same weighting function as in the 
standard Galerkin formulation for the momentum equations. 
The element residual is 

W~ 1 O (rpu) + r -~ (pv)} dA (13) j ~TT, 
Integrate Equation 13 by parts to obtain 

f WpurdO-fWpvdr-f{PU~r+pV!a~-~-}rdrdO (14) 

Following conventional practice, the surface integral terms 
appearing in Equation 14 form the natural boundary conditions 
for the continuity equation or for the resulting pressure 
equation. These surface integrals will cancel along interior 
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element surfaces when assembled, and they will be identically 
zero for either slip or no-slip wall boundaries. Hence they will 
contribute only at the inflow and outflow boundaries, providing 
a convenient means of specifying these boundaries conditions 
for the pressure. 

The following integral then is evaluated over all elements: 

fIPU~r +pvl tgW) r -ffff-~rdrdO (15) 

At this point, the continuity equation residual defined by 
Equation 15 is expressed as a function of the velocity 
components u and v. To derive a pressure equation, a relation 
between velocity and pressure is required. This relation is 
obtained from the momentum equations as expressed in 
Equations 9 and 10. 

As was successfully done in other finite difference methods, 6'13 
assume the pressure gradients in Equations 9 and I0 are known. 
Then, in shorthand notation, these equations become 

ui = fii- K= ~ (16) 

vi=~i- Kv ~o0 (17) 

where 

t~, ~'J@~ (18) 
a'/i 

a~.v~ + f'[ 
~=~'J~i (19) 

r==~ . fWdA  (20) 

K v = ~ f W d A  (21) 

Equations 16 and 17 will serve as the required relation betwen 
the velocity and pressure. This relation is not exact but only an 
approximation. It is not essential, however, that this relation be 
exact for the iterative solution procedure to converge. This 
approximation is comparable to using a secant approximation 
in Newton's method. 

Substituting Equations 16 and 17 into Equation 15 yields 

ff (o, 

Equation 22 can be rearranged as 

dp dW 1 dp ~ . ]  
zz yOK. ~r -~r r + pK~ r o0 ~ _jdrdO 

^ O W  A 1 dW =ff[pui ,.+ov,-; -]araO (23, 
Equation 23 is the resulting pressure equation. It is a Poisson 

type equation and therefore results in a symmetric positive 
del'mite coefficient matrix. Unlike other Poisson pressure 
equations, 14 Equation 23 was derived from the continuity 
equation and thus contains a direct continuity constraint. 

With the pressure established by Equation 23, the velocities 
are updated using the algebraic relations: 

Us = ~ + ~., brlPi (24) 
1 

v~ = vi + ~ b~lP~ (25) 
J 

where the hat velocities are defined by Equations 18 and 19. 
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Overall solution organization 

Segregated solution 

The overall organization of the iterative solution strategy is 
illustrated in Figure 3. As shown, the solution is a segregated 
approach where the two velocity components and pressure are 
solved for sequentially rather than simultaneously. Most 
previous finite element formulations use a direct solution 
method and simultaneously solve for all three variables. The use 
of the segregated approach, common in finite difference 
methods, results in a considerable savings in coefficient storage 
and execution time. 

The solution of the discretized equations for momentum and 
pressure is accomplished using iterative solution methods. 
These do not require the storage of the global matrices in 
banded form. Only the nonzero terms are stored along the lines 
of many finite difference methods. The required computer 
storage is then a linear function of the number of nodes and is 
independent of the bandwidth of the matrix. 

such as Gaussian efimination. The PCG solution method is also 
much faster than direct methods for large two-dimensional or, 
in particular, three-dimensional problems. This particular 
method is applicable only to symmetric matrices and thus was 
used only for the pressure equation (Equation 23) and not the 
nonsymmetric momentum equations. The momentum 
equations (Equations 11 and 12) are solved using a tridiagonal 
approximate factorization. 

Boundary conditions 

The boundary conditions used for both geometries analyzed 
were similar, except for the number of nodes specified. 

Inlet boundary 

Along the inner radius or inlet boundary, both inlet velocity 
components were specified. The magnitude of the radial inlet 
velocity was specified to match the experimental flow rate as 
given in Brownwell et al. ~ The tangential velocity component 
was then specified accordingly to provide the prescribed inlet 
flow angle. Both the radial and tangential velocity were taken to 
be uniform over the inlet. The pressure boundary condition was 
obtained by calculating the surface integrals in Equation 14 
using these specified velocities. 

Exit boundary 

At the outer radius or exit boundary, a specified constant 
pressure and flow angle were specified. The formulation does 
not require that the flow angle be specified. However, the 
experimental model has a large number of turning vanes at the 
outlet.1 To simulate these vanes, the flow angle was specified in 
the following manner. Natural boundary conditions were used 
for the radial velocity component. The tangential velocity 
component was then calculated from the following relation: 

v = u tan 0 e (26) 

where Oe is the prescribed exit flow angle. 

Periodic boundaries 

The treatment of the periodic boundary conditions yields nodal 
equations for nodes lying on the periodic boundaries identical in 
form to an interior node in the solution domain. From a 
computational viewpoint, these nodes are not boundary nodes. 

Figure 4 illustrates a pair of periodic boundaries. Nodes 3 and 
18 form a pair of periodic nodes. The treatment essentially 
involves a modification of the assembly procedure. In the 
modified assembly procedure, the contributions from elements 
A and B are assembled as contributions to the global equation 
for node 3. The resulting global equation for node 3 has the 
stencil indicated in Figure 4. Moreover, all references to node 18 
are eliminated from the global equations. In the solution of the 
global equation, the value for node 3 is actually determined. 
Following this solution, the nodal value for node 18 is then 
updated. This procedure is used for all variables. 

Blade boundary 

On the blade surface, both velocity components were set to zero, 
no-slip wall boundaries. 

Iterative solution methods 

The algebraic equations for the nodal pressure values are solved 
using a preconditioned conjugate gradient (PCG) solution 
method t5'16. The current calculations used incomplete 
Cholesky decomposition for the preconditioning step. The PCG 
solution method is semidirect ts and provides a very accurate 
and rapid solution of the pressure equation without the 
prohibitive storage requirements of a direct solution method 

Problem geometry 
The experimental diffuser rig model is shown in Figure 5. For a 
more complete description of the geometry, see Reference 1. 
Water enters the diffuser through the inner radius at a blade 
angle of 16 ° and leaves through the outer radius at the same 
angle. The diffuser was modeled with four and eight blades at 
Reynolds number of approximately 20,000. 
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These four regions were selected to minimize the number of long 
tapered elements. This analysis required 1215 nodes and 1120 
elements. 

Both geometries were analyzed using coarser meshes. The 
number of elements were increased until the separation points 
did not change more than 10% from the coarser mesh and the 
size and shape of the recirculation regions were unchanged. 

R e s u l t s  

Computed results of the four blade diffuser analysis are shown in 
Figures 7-10. Figure 7 shows the streamlines of the flow, and 
Figure 8 is a plot of the velocity vectors. These figures show that 
the flow separates from the pressure side of the blade very early. 
The predicted separation point occurs at 19.6 % of the blade 
length from the leading tip. The experimentally observed value 
was 23 %. 

Figures 7 and 8 also indicate that very little flow enters the 
recirculation region. Velocities in this region are two orders of 
magnitude less than in the jet near the leading edge of the blade. 
Figure 9, the unscaled velocity vectors (similar to a yarn tuft 
photograph1), shows two counterrotating vortices are in this 
recirculation region. The vortices are broken by one periodic 
boundary and continue on the other. Figures 7-9 also show 
clearly the effect of the turning vanes at the exit of the diffuser is 
restricted to the first few nodes in from the exit. 

Figure 10 shows the pressure contours for the four blade 
diffuser. As a result of the large recirculation area on the 
pressure side of the blade, all the pressure recovery occurs on the 
suction side. The pressure contours as well as the streamlines 
exhibit a near potential flow behavior on this suction side. The 
stagnation point at the leading edge of the blade is also clearly 
visible. In general, the flow patterns predicted agree 
qualitatively with what was observed experimentally. 

The results of the eight blade diffuser analysis are shown in 
Figures 11-14. Figure 11 is a plot of the streamlines of the flow, 
and Figure 12 shows the velocity vectors. These two figures 
demonstrate that the effect of the additional blades was to delay 
separation. For this case, the predicted separation point occurs 
at 43 % of the blade length from the leading tip. Experimentally, 
this value was determined as 50%. 

Figure 5 Four blade vaned diffuser model 

Because of the symmetry of the problem, only a portion of the 
diffuser was modeled. For the four blade model, one fourth of 
the geometry was discretized, as shown in Figure 5. The two 
outer radial lines of the discretized region are treated using the 
periodic boundary conditions described previously. This 
quadrant could have been chosen anywhere in the diffuser. This 
analysis used 1467 nodes and 1364 elements. 

One eighth of the eight blade diffuser was modeled, as shown 
in Figure 6. Nodes along the radial lines marked I1 and I2 form 
the inner periodic pairs of nodes. Nodes along the radial lines 
marked O1 and 0 2  form the outer periodic pairs of nodes. The 
lines between blades 4 and 5 illustrate how the discretized region 
was generated. Each of these four sided regions is subdivided 
into elements using an isoparametric mapping approach. 1~ 

U! 
Figure 6 Eight blade vaned diffuser model 
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Figure 7 Streamlines for four blade diffuser Figure 9 Unscaled velocity vectors for four blade diffuser 

Figure 8 Scaled velocity vectors for four blade diffuser 

Figures 11 and 12 also show little flow enters the recirculation 
region. However, the velocities in this wake region are only one 
order of magnitude less than the jet velocities. These two figures 
do show the two counterrotating vortices in the recirculation 
region. However, the unscaled velocity vectors in Figure 13 
point out a third smaller vortex near the separation point. 
Again, vortices that  get broken by one periodic boundary 

Figure 10 Pressure contours for four blade diffuser 

continue on the paired periodic boundary. As for the four blade 
case, the exit turning vanes affect only a narrow region just 
before the diffuser exit. 

Figure 14 shows the pressure contours from the eight blade 
diffuser analysis. Like the four blade model, all the pressure 
recovery lies beneath the blades. In fact, for the eight blade case, 
a significant portion of the recovered pressure is lost again 
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Figure 11 Streamlines for eight blade diffuser Figure 13 Unscaled velocity vectors for eight blade diffuser 

Figure 12 Scaled velocity vectors for eight blade diffuser 

between the blades. Again, the flow patterns predicted agree 
qualitatively with experimental observations. 

Both analyses were performed on a Prime 850 computer. The 
four blade solution required 150 iterations to achieve a 
converged solution with an average change in pressure of less 
than 0.1 9/o. Total CPU time for this analysis was 324 minutes. 
The eight blade solution required 125 iterations to achieve a 
converged solution with the average pressure change less than 
0.1%. Total CPU time for this analysis was 272 minutes. For 

Figure 14 Pressure contours for eight blade diffuser 

this computer, these numbers are comparable to the CPU 
requirements of many of the available finite difference methods. 

Conclusions 

A new finite element method was used to analyze a laboratory 
vaned diffuser. This experimental diffuser contained many of the 
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complex features common to practical turbomachinery 
problems, including steep pressure and velocity gradients and 
separating flow. The separation point predicted by this method 
for the four blade diffuser occurred at 19.6 % of the blade length 
from the blade leading edge. Experimentally, separation 
occurred at 23 % of the blade length. For the eight blade diffuser, 
the predicted separation point was 43 % of the blade length from 
the leading edge. The experimentally observed value was 50%. 
In general, the predicted flow patterns agreed with experimental 
observations. This comparison indicates that the numerical 
method presented here is a reliable technique for predicting 
complex fluid flows. 

The current finite element method has also been 
demonstrated to be competitive in required storage and 
execution times with available finite difference methods. 

This analysis method has recently been extended to include 
three-dimensional modeling capability. Early benchmark runs 
indicate that this finite element method has the same order of 
magnitude cycle time as a comparable finite difference method. 
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